Abstract

This study proposes a novel ‘pusher’ type piezoelectric actuator based on clamping blocks, where a solid mover can be driven at a high resolution and with a designed stroke of 4 mm. The working principle of the actuator is presented and the design process of its key component ‘stator’ is described. Via finite element simulation, the rationality of the structure of the device was analyzed. The prototype actuator was manufactured and its main performance was tested. The driving characteristics of the proposed actuator produced the following experimental results. The movement resolution was 31.5 nm, the maximum speed was 248 μm s−1 and the maximum loading capacity was 123.5 N, verifying that it could meet the needs of precise positioning with a high resolution and a large load capacity. The actuator was also found to achieve various step speeds when the driving voltage and working frequency were changed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call