Abstract
AbstractThe synergies from integrating direct air capture and CO2 methanation are assessed and quantified. Three direct air capture and methanation processes with different integration strategies are proposed: only heat integration, direct air capture sorbent regeneration with high‐pressure H2, and complete integration in a single unit. The heat integration study via pinch analysis evaluated the potential energy demand reduction. Overall autothermal operation is achievable, as the heat generated in methanation often exceeds that required for direct air capture sorbent regeneration. A novel process combining CO2 adsorption and methanation in one reactor provided the best productivity and energy demand results. However, this design requires complex cycles and strict demands on the sorbent and catalyst, requiring further development and experimental demonstration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.