Abstract

The focus of this work is the study of the extractive dividing wall column (EDWC) for separating the azeotropic mixture of dipropyl ether and 1-propyl alcohol with N, N-dimethylacetamide (DMAC) as the entrainer. Three separation sequences are investigated, including a conventional extractive distillation sequence (CEDS), EDWC and a pressure swing distillation sequence (PSDS). The static simulation results showed that the EDWC with DMAC as the entrainer is more economically attractive than CEDS and PSDS. Subsequently, a control structure CS1 based on a three-temperature control loop and a control structure CS2 with the vapor split ratio as the manipulated variable are investigated for the EDWC. Their dynamic control performances are evaluated by facing large feed flow rates and composition disturbances. The results showed that the CS1 can deal with feed flow rate disturbance effectively. However, the transient deviation is large and the settling time is too long when facing feed flow composition disturbances. The CS2 can quickly and effectively deal with feed flow rate and composition disturbances, and it can maintain the two products at high purity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call