Abstract

A magnetorheological elastomer (MRE-based semi-active (SA) vibration isolator is developed and tested in real-time with a SA controller, illustrating the feasibility of MRE-based isolators. While several researchers have applied MREs to tunable vibration absorbers (TVAs), little work has been done using MREs in primary isolation systems. Further, in cases where TVAs were developed, few SA controllers were implemented in proof of concept experiments. This article presents a magnetically biased MRE-based vibration isolator, which enables the device to have a fail-safe operation in the event of a power failure. To test the effectiveness of the MRE isolator, a SA controller is developed to minimize the payload velocity. A comparison by simulation of variable modulus and damping systems is also presented. Finally, experimental results are given, showing that the MRE isolator and SA controller system reduce resonances and payload velocities by 16-30% when compared to passive systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call