Abstract

The paper deals with a low-temperature thermally driven desalination unit exploiting the HD (humidification/dehumidification) process. The system is a closed air cycle unit and is based on a single-effect humidification/dehumidification technique: heated seawater is introduced into the humidification section of a closed tunnel to saturate the circulating air; then the water vapor in moist air separates within the condensation column, where freshwater production takes place.A HD desalination prototype has been designed, assembled and fully instrumented in order to monitor all physical quantities and to evaluate the performance under different operating conditions. The prototype has been experimentally investigated on a test facility established at the Bergamo University Labs. The results of the measurement campaign are presented and discussed.A computer code for simulating the desalination process has also been developed and it was validated by the experimental data.The modeling procedure investigates air and water thermodynamic properties across every component and allows to predict the HD desalination unit performance, varying seawater and air flow rates, the heat source temperature level and the heat exchanger surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.