Abstract

High-voltage p-channel 4H-SiC insulated gate bipolar transistors (IGBTs) have been fabricated and characterized. The devices have a forward voltage drop of 7.2 V at 100 A/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> and a -16 V gate bias at 25degC, corresponding to a specific on-resistance of 72 mOmega ldr cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> and a differential on-resistance of 26 mmOmega ldr cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> . Hole mobility of 12 cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> /V ldr s in the inversion channel with a threshold voltage of -6 V was achieved by optimizing the n <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">+</sup> well doping profile and gate oxidation process. A novel current enhancement layer was adopted to reduce the JFET resistance and enhance conductivity modulation by improving hole current spreading and suppressing the electron current conduction through the top n-p-n transistor. Inductive switching results have shown that the p-IGBT exhibited a turn-off time of ~1 mus and a turn-off energy loss of 12 m J at 4-kV dc-link voltage and 6-A load current at 25degC. The turn-off trajectory from the measured inductive load switching waveforms and numerical simulations shows that the p-IGBT had a near-square reverse bias safe operating area. Numerical simulations have been conducted to achieve an improved tradeoff between forward voltage drop and switching off energy by investigating the effects of drift layer lifetime and p-buffer layer parameters. The advantages of SiC p-IGBTs, such as the potential of very low ON-state resistance, slightly positive temperature coefficient, high switching speed, small switching losses, and large safe operating area, make them suitable and attractive for high-power high-frequency applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.