Abstract
Abstract The increasingly demand for machining accuracy and product quality excites a great interest in high-resolution non-destructive testing (NDT) methods, but spatial resolution of conventional high-energy computed tomography (CT) is limited to sub-millimeter because of large X-ray spot size. Therefore, we propose a novel high-resolution high-energy CT based on laser-driven X-ray source and prove its feasibility to allow high-spatial-resolution tomographic imaging of dense objects. A numerical model is developed with a consideration of realistic factors including parameter fluctuations, statistical noise and detecting efficiency. By using modulation transfer functions, the system performance is quantitatively characterized and optimized in terms of source characteristics, detector pixel size, geometrical configuration and projection parameters. As a result, the simulated tomography for a high-density object (up to 19.35 g/cm3) achieves a basic spatial resolution of 64.9 μm. This concept expands the prospects of laser-based compact X-ray sources and shows a great potential to achieve high-perspectivity micro-CT imaging for various industrial applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.