Abstract

We demonstrate the feasibility of phase-contrast imaging with an ultrafast laser-based hard x-ray source. Hard x rays are generated during the interaction of a high-intensity femtosecond laser pulse (10TW,60fs,10Hz) focused onto solid target in a very small spot (3μm diam). Such a novel x-ray source has a number of advantages over other sources previously used for phase-contrast imaging: It is very compact and much cheaper than a synchrotron, it has higher power and better x-ray spectrum control than a microfocal x-ray tube, and it has much higher repetition rate than an x-pinch source. The Kα line at 17keV produced using a solid Mo target, and the in-line imaging geometry have been utilized in this study. Phase-contrast images of test objects and biological samples have been realized. The characteristics of the images are the significant enhancement of interfaces due to an x-ray phase shift that reveal details that were hardly observable, or even undetectable, in absorption images and suppression of optically dense structures well defined in the absorption images. Our study indicates that the absorption and the phase-contrast images obtained with an ultrafast laser-based x-ray source provide complementary information about the imaged objects, thus enriching our arsenal of research tools for laboratory or clinic-based biomedical imaging.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.