Abstract
AbstractA UHV-compatible nitrogen arcjet suitable for the growth of III-nitrides by molecular beam epitaxy is described and characterized. The arcjet operates at powers between 10W and 300W (the highest power used for these studies); typical nitrogen flows range between 5sccm and 100sccm. Optical emission spectra show the presence of activated atomic (N*) and molecular (N2*) nitrogen. A collisional radiative equilibrium model has been employed to provide insight into the excitation state of the active nitrogen. These results indicate that the arcjet is capable of supplying atomic nitrogen fluxes consistent with growth rates on the order of several monolayers per second. Langmuir probe measurements conducted near the position of the sample holder in the MBE chamber show the charged particle flux density is very low. The arcjet operates over a large powerpressure parameter space, and properties of the arc can be systematically “tuned” to provide a source suitable for selected-energy-epitaxy.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have