Abstract
An approach is proposed for deriving effective layer parameters of a metafilm, based on a combination of the Maxwell–Garnet and generalized sheet transition conditions methods, which can be employed to an arbitrarily shaped particle array. For patch particles, it is revealed that both width and thickness of the particles have a critical role in effective layer parameters. To this end, this paper conceptualizes that with the engineering of width and thickness of the arrayed semiconductor patch particles, near unity absorption can be achieved in the optical frequency range. Our final absorption device contains an array of a specific shape particle, which is a combination of two particles with different widths and thicknesses. The simulation result of the proposed structure is also proved by translation matrix (T-matrix) method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.