Abstract
Design of a metamaterial based on an S-shaped resonator surrounded by a ground frame and excited by using a feeding transmission line on microstrip technology is presented. Since the resonator, ground frame, and its excitation mechanism are all realized on a microstrip, its characterization can be carried out using common laboratory equipment without needing any waveguide components or plane-wave-illumination techniques. The structure presented here may be realized on any microstrip and does not require special materials. The resonator and ground frame are both on the same side of the microstrip, thus the proposed topology may also be populated with active and passive microwave components, and hybrid active, passive, or reconfigurable microwave circuits may be realized. In metamaterial designs that require plane wave illumination, usually many numbers of periodic unit cells are needed; however, in our design, only one cell is capable of achieving metamaterial properties. The constitutive parameters of the metamaterial are retrieved and compared to demonstrate the agreement between simulations and measurements. The proposed topology is also demonstrated in a sensor application, where simulated and measured results agree well. Thus, it can be realized using standard microwave technology and used for numerous applications where metamaterial properties are needed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.