Abstract
In this brief, we designed, constructed, and analyzed a frequency-tunable metamaterial resonator. The proposed design consists of an S-shaped resonator, a ground frame, and a feeding transmission line. First, the structure is designed as a nontunable resonator and then tunability is achieved by employing varactor diodes. In order to verify and demonstrate its tunable metamaterial properties, reflection and transmission parameters, group delay, electric and magnetic field distributions, and permittivity and permeability at each tuned frequency were analyzed. Simulation and measured results agree well and show that a high transmission and reflection peak occurs at each resonance frequency that may be tuned with the applied control voltage. Therefore, the proposed tunable metamaterial resonator may be used to realize reconfigurable microwave circuits such as reflection/transmission filters, antennas, and sensors, and for achieving flexibility in many other microwave circuits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Circuits and Systems II: Express Briefs
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.