Abstract

For its fast response, nanometer resolution, no backlash, no friction and bigger driving force, flexure hinge has been commonly used as a substitute for mechanical joints in the design of micro-displacement mechanisms used in vibration suppression and micro-positioning applications. However, inaccurate modeling of flexure hinges deteriorates the positioning accuracy. In this paper, a planar two-degree-of-freedom (DOF) parallel four-bar manipulator is designed with the intention of accurate flexure hinge modeling. A 1-DOF flexure hinge is considered, a static analysis and a dynamic analytical model of parallel four-bar manipulator is presented. Simulation result based on the finite element method is coincident to the analytic result. Based on the theoretical analysis, the experimental demonstration to study the performance of the manipulator is described, and experimental results are in close agreement with those predicted by the theoretical analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.