Abstract

A novel high natural frequency microgripper with symmetric compliance structure is reported in this paper, which is actuated by a piezoelectric actuator (PZT). Two lever mechanisms are utilized to amplify the output displacement of the PZT to achieve a large jaw desired output displacement. The symmetric lever mechanism and the jaws are designed separately and then the microgripper is constructed by assembling the two parts together. So different kinds of objects can be manipulated through designing different jaws, which broaden the application of the microgripper. The analytical model has been established based on pseudo-rigid-body (PRB) modeling method and matrix-based compliance modeling (MCM) method. According to the established model, the performance of the microgripper including amplification ratio, input stiffness and natural frequency are analyzed. Finite element analysis (FEA) is carried out to investigate the performance and validate the theoretical models for further optimum design of the microgripper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.