Abstract

Piezoelectric energy harvesting from human motion is challenging because of the low energy conversion efficiency at a low-frequency excitation. Previous studies by the present authors showed that mechanical plucking of a piezoelectric bimorph cantilever was able to provide frequency up-conversion from a few hertz to the resonance frequency of the cantilever, and that a piezoelectric knee-joint energy harvester (KEH) based on this mechanism was able to generate sufficient energy to power a wireless sensor node. However, the direct contact between the bimorph and the plectra leads to reduced longevity and considerable noise. To address these limitations, this paper introduces a magnetic plucking mechanism to replace the mechanical plucking in the KEH, where primary magnets (PM) actuated by knee-joint motion excite the bimorphs through a secondary magnet (SM) fixed on the bimorphs tip and so achieve frequency up-conversion. The key parameters of the new KEH that affect the energy output of a plucked bimorph were investigated. It was found that the bimorph plucked by a repulsive magnetic force produced a higher energy output than an attractive force. The energy output peaked at 32 PMs and increased with a decreasing gap between PM and SM as well as an increasing rotation speed of the PMs. Based on these investigations, a KEH with high energy output was prototyped, which featured 8 piezoelectric bimorphs plucked by 32 PMs through repulsive magnetic forces. The gap between PM and SM was set to 1.5 mm with a consideration on both the energy output and longevity of the bimorphs. When actuated by knee-joint motion of 0.9 Hz, the KEH produced an average power output of 5.8 mW with a life time >7.3 h (about 3.8 × 105 plucking excitations).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.