Abstract

The design and performance of a transducer for low frequency ultrasound tomography is presented, motivated by recent research demonstrating that acoustic waves transmitting at frequencies between 10 kHz and 750 kHz penetrate the lungs and may be useful for thoracic imaging. An adaptation of the traditional Tonpilz design was developed, vibrational amplitude and electrical impedance were measured, and an optimal frequency was determined. The design is found to meet the desired mechanical, electrical, and safety specifications. Thus, it was considered a promising option for the target application of pulmonary imaging with ultrasound computed tomography between 50 and 200 kHz; highest efficiency achieved around 125 kHz and 156 kHz, and beam divergence of 40°.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.