Abstract
The utilization of phase change materials (PCMs) holds tremendous potential of heat storage domain. The PCM's refractory at the latent heat thermal energy storage (LHTES) unit bottom hinders the heat storage efficiency, despite the significant improvement in thermal conductivity achieved through the addition of metal foam. This study employs numerical simulation to examine the impact of applying bottom cross-cut on PCM's spatial distribution in a horizontal LHTES unit. The manuscript analyzes parameters including melting fraction, complete melting time, Rayleigh number, natural convection heat transfer gain, melting phase interface, velocity and temperature distributions, and heat storage. The findings indicate that the proximity to the heating tube results in a reduction of solid volume at the LHTES unit bottom. A 0.6 bottom cross-cut ratio leads to an 18.84 % faster heat storage rate compared to a concentric-circle unit. Furthermore, a bottom cross-cut ratio of 0.5 enhances natural convection heat transfer gain by 3.28 times.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have