Abstract
The design and application of electrocatalysts based on Earth-abundant transition-metal oxides for biomass valorization remain relatively underexplored. Here, we report a nanocasting route to synthesize mesoporous δ-MnO2 with a high surface area (198 m2/g), high pore volume, and narrow pore size distributions to address this issue. By taking structural advantages of mesoporous oxides, this mesoporous δ-MnO2 is employed as a highly efficient, selective, and robust anode for 5-hydroxymethylfurfural (HMF) electrochemical oxidation to 2,5-furandicarboxylic acid (FDCA) with a high yield (98%) and faradic efficiency (98%) under alkaline conditions. The electrocatalyst is also effective for the more difficult HMF electro-oxidation under acidic conditions, forming both FDCA and maleic acid as value-added products in a potential-dependent manner. Experimental results combined with theoretical calculations provide insights into the reaction kinetics and the reaction pathways of electrochemical HMF oxidation over this advanced electrocatalyst. This work thus showcases the rational design of non-noble metal electrodes for multiple applications, such as oxygen evolution, water electrolysis, and biomass upgrading with high energy efficiency.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have