Abstract

A highly tunable bandgap-guiding microstructured polymer optical fiber (mPOF) is designed by infiltrating the cladding air holes with a liquid crystal. Bandgap is blue shifted as temperature is increased. A high thermal tuning sensitivity of -5.5 nm/℃ is achieved at the long-wavelength edge of the bandgap. Mode properties and effective mode area of the fundamental mode are investigated by using the full-vector finite element method. The designed fiber has a large effective area and high power transmission coefficient between the index guiding modes and the bandgap guiding modes. Our results provide theoretical references for applications of mPOF in sensing and tunable fiber-optic devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.