Abstract

PurposeThis study aims to investigate the fabrication of solid ankle foot orthoses (SAFOs) using fused deposition modeling (FDM) printing technology. It emphasizes cost-effective 3D scanning with the Kinect sensor and conducts a comparative analysis of SAFO durability with varying thicknesses and materials, including polylactic acid (PLA) and carbon fiber-reinforced (PLA-C), to address research gaps from prior studies.Design/methodology/approachIn this study, the methodology comprises key components: data capture using a cost-effective Microsoft Kinect® Xbox 360 scanner to obtain precise leg dimensions for SAFOs. SAFOs are designed using CAD tools with varying thicknesses (3, 4, and 5 mm) while maintaining consistent geometry, allowing controlled thickness impact investigation. Fabrication uses PLA and PLA-C materials via FDM 3D printing, providing insights into material suitability. Mechanical analysis uses dual finite element analysis to assess force–displacement curves and fracture behavior, which were validated through experimental testing.FindingsThe results indicate that the precision of the scanned leg dimensions, compared to actual anthropometric data, exhibits a deviation of less than 5%, confirming the accuracy of the cost-effective scanning approach. Additionally, the research identifies optimal thicknesses for SAFOs, recommending a 4 and 5 mm thickness for PLA-C-based SAFOs and an only 5 mm thickness for PLA-based SAFOs. This optimization enhances the overall performance and effectiveness of these orthotic solutions.Originality/valueThis study’s innovation lies in its holistic approach, combining low-cost 3D scanning, 3D printing and computational simulations to optimize SAFO materials and thickness. These findings advance the creation of cost-effective and efficient orthotic solutions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call