Abstract
The realization of high-speed, low-power optical phased array (OPA) on thin-film lithium niobate on insulator (LNOI) is considered an ideal solution for the next generation of solid-state beam steering. Most reported on-chip two-dimensional optical phased arrays suffer from issues such as large antenna spacing, high power consumption and complex wiring due to independent control of array elements. To address these challenges while fully utilizing the benefits of the LNOI platform, we propose a two-dimensional beam-scanning OPA based on lithium niobate (LN) waveguides. We design a multi-layer cascaded domain engineering structure inside the LN waveguide, combined with wavelength tuning, to enable two-dimensional beam scanning with single electrode controlling the OPA. Through simulation, we achieve a 42°×9.2° two-dimensional beam steering. Compared to existing on-chip integrated OPAs, this work offers significant advantages in increasing integration, simplifying control units and reducing power consumption.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have