Abstract

One of the paramount issues in the field of VLSI design is the rapid increase in power consumption. Therefore, it is necessary to develop power-efficient circuits. Here, three new simple architectures are presented for a Dynamic Double Edge Triggered Flip-flop named as Transistor Count Reduction Flip-flop, S-TCRFF (Series Stacking in TCRFF) and FST in TCRFF (Forced Stacking of Transistor in TCRFF). The first one features a dynamic design comprising of transmission gate in which total transistor count has greatly reduced without affecting the logic, thereby attaining better power and speed performance. For the reduction of static power, two types of stacking called series and forced transistor stacking are applied. The circuits are simulated using Cadence Virtuoso in 45[Formula: see text]nm CMOS technology with a power supply of 1[Formula: see text]V at 500[Formula: see text]MHz when input switching activity is 25%. The simulated results indicated that the new designs (TCRFF, S-TCRFF and FST in TCRFF) excelled in different circuit performance indices like Power-Delay-Product (PDP), Energy-Delay-Product (EDP), average and leakage power with less layout area compared with the performance of nine recently proposed FF designs. The improvement in PDPdq value was up to 89.2% (TCRFF), 89.9% (S-TCRFF) and 90.3% (FST in TCRFF) with conventional transmission gate FF (TGFF).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call