Abstract
This paper presents the design and the analysis of power efficient binary content addressable memory (PEBCAM) core cells using the energy recovery principle of adiabatic logic. Generally, in the design of adiabatic CAM, the storage array is built by using a basic CAM cell, but the peripheral circuits are realized by using different adiabatic logic structures. In this paper, we propose the design of 3 novel power efficient binary content addressable memory core cells (PEBCAM core cells) using adiabatic logic, namely improved efficient charge recovery logic (IECRL) CAM core cell, positive feedback adiabatic logic (PFAL) CAM core cell and pass transistor adiabatic logic (PAL) CAM core cell. Memory arrays of size 4 $$\times $$? 4 were designed and implemented using the proposed PEBCAM core cells in 45nm CMOS technology. It was found that recovery of dissipated power using adiabatic logic was better than the other CAM structures. The simulation results of the PEBCAM-IECRL CAM proved to be better with a power saving of 77.8% than the conventional adiabatic CAM structures. The circuits were designed using 45nm CMOS technology with a sinusoidal power clock of 1 V and other node voltages at 0.7 V using Cadence Virtuoso.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.