Abstract

Low power consumption is crucial for error-acceptable multimedia devices, with picture compression approaches leveraging various digital processing architectures and algorithms. Humans can assemble useful information from partially inaccurate outputs in many multimedia applications. As a result, producing exact outputs is not required. The demand for an exact outcome is fading because new innovative systems are forgiving of faults. In the domain where error-tolerance is accepted, approximate computing is a new paradigm that relaxes the requirement for an accurate modeling while offering power, time, and delay benefits. Adders are an essential arithmetic module for regulating power and memory usage in digital systems. The recent implementation and use of approximate adders have been supported by trade-off characteristics such as delay, lower power consumption. This study examines the delay and power consumption of conventional and approximate adders. Also, a simple, fast, and power-efficient multiplexer-based approximate adder is proposed, and its performance outperforms the adders compared with existing adders. The proposed adder can be utilized in error-tolerant and various digital signal processing applications where exact results are not required. The proposed and existing adders are designed using EDA software for the performance calculations. With a delay of 81 pS, the proposed adder circuit reduces power consumption compared to the exact one. The experiment shows that the designed approximate adder can be used to implement circuits for image processing systems because it has a smaller delay and uses less energy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.