Abstract

A class of low-complexity multi-antenna relaying schemes is proposed for orthogonal frequency division multiplexing based one-way and two-way relay networks. In the proposed schemes, two single-antenna terminal nodes complete the data transfer in two time phases via a multi-antenna amplify-and-forward relay without channel state information, discrete Fourier transform (DFT), and inverse DFT. The relay signal processing consists of receive combining, power scaling, and transmit diversity, where instantaneous time domain power scaling is proposed for power scaling and power-based selection combining and cyclic delay combining are proposed for receive combining, to leverage the performance only with time domain operations. An approximation to the outage probability is also derived to predict the coded performance behavior under practical channel models. It is shown by evaluating the outage probability and coded bit error rate that the proposed schemes outperform the conventional schemes of comparable complexity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.