Abstract

Sulfide precipitation method has been widely applied in heavy metal-polluted wastewater treatment, due to the low solubility of most metal sulfide precipitates. Nevertheless, the relevant hydrodynamics studies on the metal sulfide precipitation process are rarely found in the literature. In this study, three continuous-flow sulfide precipitation reactors (CFSPRs) were designed and evaluated by a computational method. To characterize the process efficiency of copper sulfide precipitation in different reactors, fluid velocity field, species concentration distribution, and reaction rate distribution maps were acquired as simulation results. A two-factor designed set of boundary conditions was used to determine their effects on processing efficiency. The model results indicate that the inflow rate and reactor layout have significant effects on the copper sulfide precipitation process. The layout of reactor no. 3 and the inflow rate of 0.75 m/s prove to have higher treatment efficiencies than those at other conditions. Possible explanations for the simulation results were proposed. The model data of effluent concentration were compared and statistically analyzed with the measured concentrations of copper ion and sulfur ion in the outlet stream, and the results demonstrate a strong correlation between them, which suggests the model is reasonably accurate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call