Abstract

In this article, a bacterial foraging optimisation algorithm (BFOA)-based proportional integral derivative controller with derivative filter (PIDF) is proposed for frequency regulation of multi source hybrid power system. Initially, a two area, unequal area power system with PIDF controllers, are considered. The area 1 comprises of reheat thermal power system incorporated with distributed generation (DG) system comprising of wind turbine generators (WTGs), diesel engine generators (DEGs), fuel cells (FCs), aqua-electrolyser (AE), ultra capacitor (UC) and battery energy storage system (BESS). The area 2 comprises of hydrothermal power system. The gains of the PID controller with derivative filter are optimised by using integral time multiply absolute error (ITAE) criterion. The superiority of PIDF controller is demonstrated by comparing the dynamic responses with integral derivative (ID) and proportional integral (PI) controllers. The simulation results show that the performance of dynamic responses with PIDF controller is superior to others. Further, robustness analysis is performed by varying the system parameters and wind power variations. It is observed from the simulation results that the optimum gains of the proposed controller need not be reset even if the system is subjected to wide variation in loading condition and system parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.