Abstract

In order to exert the advantages of simplified control and integral rigidity, a novel 16-legged walking vehicle is proposed as a carrying platform based on closed-chain mechanisms. Considering the demand for mobility of one degree-of-freedom leg mechanism, we adopt the reconfigurable approach for trajectory flexibility. Serving as a walking module, the whole close-chain leg mechanism is designed to construct the walking vehicle. On the basis of kinematic analysis and sensitivity analysis, the reconfigurable leg with “gluteus maximus” is presented for increasing the obstacle-surmounting ability. In terms of the whole vehicle, the reconfiguration assignments and strategies are analyzed to satisfy the different climbing requirements. The obstacle-climbing capabilities of the legged units are evaluated through the probability analysis. In slope-climbing process, the supporting and the propelling regions for reconfiguration are discussed and obtained with two decision conditions. A series of dynamic simulations and experiments are performed to testify the walking stability, the walking speed, the steering performance, the terrain adaptability, and the obstacle-surmounting capability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.