Abstract

A two-terminal mass (TTM) based vibration absorber with variable moment of inertia (VMI) for passive vehicle suspension is proposed. The VMI of the system is achieved by the motion of sliders embedded in a hydraulic driven flywheel. The moment of inertia increases in reaction to strong vertical vehicle oscillations and decreases for weak vertical oscillations. The hydraulic mechanism of the system converts the relative linear motion between the two terminals of the suspension into rotating motion of the flywheel. In the case of stronger vehicle vertical oscillation, the sliders inside the flywheel move away from the center of the flywheel because of the centrifugal force, hence yielding higher moment of inertia. The opposite is true in the case of weaker vehicle oscillation. As such, the moment of inertia adjusts itself adaptively in response to the road conditions. The performance of the proposed TTM-VMI absorber has been analyzed via dynamics modeling and simulation and further examined by experiments. In comparison to its counterpart with constant moment of inertia, the proposed VMI system offers faster response, better road handling and safety, improved ride comfort, and reduced suspension deflection except in the case of sinusoidal excitations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call