Abstract

In this paper, an improved design of a tunable optical filter device which is driven by a piezoelectric actuator is proposed. The device can be used either as a tunable optical filter for discrete wavelength alignment or as a dynamic optical filter. The tunable filter is electrostatically driven and consists of three main parts: The electromechanical stage, the suspension and the thin film optical filter. The electromechanical stage and the suspension were designed using graph presentation methods, studied numerically using the finite element method (FEM). The thin film optical filter was designed by a thin film design software. The electromechanical stage was integrated with the suspension and tested as an angular driver of thin-film tilt interference filter for dense-wavelength division demultiplexing system applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.