Abstract

This paper presents the design of an innovative galloping energy harvester (GEH) that incorporates an elastic structure to reconstructed the traditional GEH. The mathematical model of the GEH is derived based on the Euler–Bernoulli beam theory and Kirchhoff’s law. Due to the nonlinear properties of the model, the partial linearization technique and Fokker–Planck–Kolmogorov equation are used to further explore the joint probability density function (PDF) and the stationary PDF of displacement and velocity. Subsequently, Monte Carlo simulation is used to illustrate the behavior of the theoretical results. The simulation results show that, under different conditions, the stationary PDF exhibits double-peak or single-peak shape, which is caused by the compression or elongation state. Meanwhile, higher wind speeds correspond to larger displacement amplitudes. Then, the stationary PDF of displacement amplitude is obtained using the stochastic average method, and the expressions for mean square voltage and mean output power are derived. Numerical results indicate that when the wind speed is below the critical wind speed for galloping phenomenon, the vibration of the GEH is mainly driven by noise. When the wind speed exceeds the critical wind speed, the GEH is mainly affected by the wind speed. Higher wind speeds correspond to higher mean output power. An optimal electromechanical coupling coefficient and the ratio of the mechanical and electrical can be derived based on the GEH parameters when galloping occurs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.