Abstract
Abstract Cable-driven hyper-redundant robots have been adopted in many fields for accessing harsh and confined environments that may be inaccessible or dangerous for humans. The cable actuation strategy makes the robot hardware safer and increases the robot payload reducing its weight. In this paper, a novel design of a fully actuated cable-driven hyper-redundant robot has been proposed. This solution is a pulleyless design that decreases the mechanical complexity, allowing to have a compact arm diameter and avoid tension losses on the cables during the motion. Three different joint designs have been taken into account and experiments have been carried to study their performances.The kinematics for the n-joint robot has been formulated, and two cable routing optimization methods, based on a genetic algorithm, have been proposed and applied to a five-joint robot.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.