Abstract

The present article deals with the conceptual design of a new medium short takeoff and landing tactical transport aircraft, which is intended to expand the institutional capabilities of the Colombian Air Force in terms of versatility and flexibility. An original design strategy was developed during the conceptual design, combining classical methodologies and high-fidelity computational fluid dynamics (CFD) simulations. This methodology allowed the aircraft to be assessed in a single design space, based on its design requirements, mission, and applicable airworthiness standards. Once obtained a baseline concept, the aerodynamic study focused on the flow around two types of wingtip devices: tip tanks and blended winglets. These devices were designed to optimize the performance capabilities of the aircraft, while keeping simple certification procedures. Wind tunnel experiments and CFD simulations were carried out to evaluate and select the best configuration. Lift, drag, and pitching moment coefficient charts, along with vorticity contours, are presented. Results showed that blended winglets have a significant potential for improving aircraft performance without severe structural weight penalties, allowing additional payload capabilities and/or increased range and fuel savings. Finally, the optimized aircraft is compared to major competitors in order to discuss and highlight its main advantages and feasibility for future production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call