Abstract

Exoskeleton assisted gait training in children with cerebral palsy (CP) offers the potential to increase therapy dosage and intensity compared to current approaches. Here, we report the design and characterization of a pediatric knee exoskeleton for gait training outside of a clinical environment. A multi-layered closed loop control system and a microcontroller based data acquisition system were implemented to provide individualized control approaches and achieve device portability for home use. Step response tests show the averaged 90% rise time was 45 ms for 5 Nm, 35 ms for 10 Nm, 40 ms for 15 Nm. The gain-limited closed-loop torque bandwidth was about 9 Hz with a 9 Nm amplitude chirp in knee flexion and extension. The actuator has low output impedance (<0.5 Nm) at low frequencies expected during use. Future work will investigate the long term effects of providing children with CP knee extension assistance during daily walking on gait biomechanics with, and without, the device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call