Abstract

Gait training via a wearable device in children with cerebral palsy (CP) offers the potential to increase therapy dosage and intensity compared to current approaches. Here, we report the design and characterization of a pediatric knee exoskeleton (P.REX) with a microcontroller based multi-layered closed loop control system to provide individualized control capability. Exoskeleton performance was evaluated through benchtop and human subject testing. Step response tests show the averaged 90% rise was 26 ± 0.2 ms for 5 Nm, 22 ± 0.2 ms for 10 Nm, 32 ± 0.4 ms for 15 Nm. Torque bandwidth of P.REX was 12 Hz and output impedance was less than 1.8 Nm with control on (Zero mode). Three different control strategies can be deployed to apply assistance to knee extension: state-based assistance, impedance-based trajectory tracking, and real-time adaptive control. One participant with typical development (TD) and one participant with crouch gait from CP were recruited to evaluate P.REX in overground walking tests. Data from the participant with TD were used to validate control system performance. Kinematic and kinetic data were collected by motion capture and compared to exoskeleton on-board sensors to evaluate control system performance with results demonstrating that the control system functioned as intended. The data from the participant with CP are part of a larger ongoing study. Results for this participant compare walking with P.REX in two control modes: a state-based approach that provided constant knee extension assistance during early stance, mid-stance and late swing (Est+Mst+Lsw mode) and an Adaptive mode providing knee extension assistance proportional to estimated knee moment during stance. Both were well tolerated and significantly improved knee extension compared to walking without extension assistance (Zero mode). There was less reduction in gait speed during use of the adaptive controller, suggesting that it may be more intuitive than state-based constant assistance for this individual. Future work will investigate the effects of exoskeleton assistance during overground gait training in children with neurological disorders and will aim to identify the optimal individualized control strategy for exoskeleton prescription.

Highlights

  • Effective gait rehabilitation remains a significant challenge in children with cerebral palsy (CP) (Damiano and DeJong, 2009)

  • With a desired torque oscillating between 0 and 6 Nm for flexion/extension the averaged −3 dB magnitude cross over frequency was at about 15 Hz and the 45 deg phase margin was present at about 12 Hz (Figures 3A,B)

  • The effect of exoskeleton inertia and robotic extension assistance was small as there was no significant difference in range of motion between when the participant with typical development (TD) walked in Constant mode and baseline

Read more

Summary

Introduction

Effective gait rehabilitation remains a significant challenge in children with cerebral palsy (CP) (Damiano and DeJong, 2009). This approach is implemented as an impedance-based assist-as-needed paradigm such that robotic assistance is only provided if the user deviates from the target trajectory (Marchal-Crespo and Reinkensmeyer, 2009) Rationale for this assistive approach centers on the notion that repetitive task training will induce plasticity and improve function, in response to experiencing somatosensory input that might not otherwise be possible (Harkema, 2001; Marchal-Crespo and Reinkensmeyer, 2009). While this framework is plausible, though not yet proven, for individuals who lack the volitional control to walk on their own, its applicability to rehabilitation of ambulatory individuals is not clear. This goal may be combined in some more affected individuals with the secondary objective to make walking easier and/or safer

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call