Abstract

BackgroundThe Zeus® (Dräger, Lübeck, Germany), an automated closed-circuit anesthesia machine, uses high fresh gas flows (FGF) to wash-in the circuit and the lungs, and intermittently flushes the system to remove unwanted N2. We hypothesized this could increase desflurane consumption to such an extent that agent consumption might become higher than with a conventional anesthesia machine (Anesthesia Delivery Unit [ADU®], GE, Helsinki, Finland) used with a previously derived desflurane-O2-N2O administration schedule that allows early FGF reduction.MethodsThirty-four ASA PS I or II patients undergoing plastic, urologic, or gynecologic surgery received desflurane in O2/N2O. In the ADU group (n = 24), an initial 3 min high FGF of O2 and N2O (2 and 4 L.min-1, respectively) was used, followed by 0.3 L.min-1 O2 + 0.4 L.min-1 N2O. The desflurane vaporizer setting (FD) was 6.5% for the first 15 min, and 5.5% during the next 25 min. In the Zeus group (n = 10), the Zeus® was used in automated closed circuit anesthesia mode with a selected end-expired (FA) desflurane target of 4.6%, and O2/N2O as the carrier gases with a target inspired O2% of 30%. Desflurane FA and consumption during the first 40 min were compared using repeated measures one-way ANOVA.ResultsAge and weight did not differ between the groups (P > 0.05), but patients in the Zeus group were taller (P = 0.04). In the Zeus group, the desflurane FA was lower during the first 3 min (P < 0.05), identical at 4 min (P > 0.05), and slightly higher after 4 min (P < 0.05). Desflurane consumption was higher in the Zeus group at all times, a difference that persisted after correcting for the small difference in FA between the two groups.ConclusionAgent consumption with an automated closed-circuit anesthesia machine is higher than with a conventional anesthesia machine when the latter is used with a specific vaporizer-FGF sequence. Agent consumption during automated delivery might be further reduced by optimizing the algorithm(s) that manages the initial FGF or by tolerating some N2 in the circuit to minimize the need for intermittent flushing.

Highlights

  • The Zeus® (Dräger, Lübeck, Germany), an automated closed-circuit anesthesia machine, uses high fresh gas flows (FGF) to wash-in the circuit and the lungs, and intermittently flushes the system to remove unwanted N2

  • The Zeus® has to use a high FGF, initially to wash-in the circuit and the lungs, and later to intermittently flush the circuit to remove unwanted N2. Because this use of high FGF periods increases desflurane consumption above true circuit anesthesia (CCA) conditions, we hypothesized that desflurane consumption with a conventional anesthesia machine (ADU® or Anesthesia Delivery Unit, GE, Helsinki, Finland) might be lower than with the Zeus® if used with a previously derived desflurane-O2-N2O FD-FGF schedule that allows very early FGF reduction [3,4]

  • The desflurane concentrations resulting from the use of that particular administration schedule with the ADU anesthesia machine have been presented [4], and in this manuscript we present only those data pertinent to the current study

Read more

Summary

Introduction

The Zeus® (Dräger, Lübeck, Germany), an automated closed-circuit anesthesia machine, uses high fresh gas flows (FGF) to wash-in the circuit and the lungs, and intermittently flushes the system to remove unwanted N2. We hypothesized this could increase desflurane consumption to such an extent that agent consumption might become higher than with a conventional anesthesia machine (Anesthesia Delivery Unit [ADU®], GE, Helsinki, Finland) used with a previously derived desflurane-O2-N2O administration schedule that allows early FGF reduction. The desflurane concentrations resulting from the use of that particular administration schedule with the ADU anesthesia machine have been presented [4], and in this manuscript we present only those data pertinent to the current study

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.