Abstract
Increase in aridity is a global phenomenon due to climate change. Understanding soil microbial communities' response to aridity induced desertification is essential to predict the regulation of microbial processes under climate change and to develop feasible restoration plans. Therefore, to elucidate desertification effects, we investigated the changes in soil properties and, shifts and drivers of soil microbial diversity and community composition of a dry-hot valley-based Pinus densata forest located in south-east Tibetan Plateau of China. Amplicon sequencing of bacterial and fungal communities were used to determine soil bacterial and fungal community composition and diversity patterns. The results revealed that soil bacterial and fungal alpha-diversities were lower in desertified P. densata forest soils. Soil total carbon content (TC) was the major predictor of bacterial Pielou index. Whereas fungal Chao 1 and Simpson diversity indices were mainly influenced by total nitrogen contents (TN) of the soil. Differential response between soil bacterial and fungal communities' structures were observed between the desertified and non-desertified soils. Soil pH mainly regulated the overall microbial community structures in addition to TC determining bacterial and TN determining fungal community structures, respectively. Changes in the relative abundance of bacterial phylum Chloroflexi and Actinobacteria, and the ratio of fungal phylum Ascomycota/Basidiomycota were the indicators of intensity of soil desertification in the studied forests. The relative abundance of pathogenic microbial communities in soils was more in desertified soils in comparison to the non-desertified soils of P. densata forests, such as the bacterial genus Conexibacter and fungal genera Penicillium and Ilyonectria. This study evidences the differential response of soil bacterial and fungal communities to changes in soil biotic and abiotic properties indicating differential adaptive mechanism in a forest ecosystem currently experiencing adverse effects of rapid desertification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.