Abstract
The minimum attainable noise figure for scaled- CMOS low-noise amplifiers (LNAs) is limited by impedance mismatches such as the well-known noise/power tradeoff. In this paper, we show that a power-constrained optimization of the device noise resistance parameter, R <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</sub> , significantly reduces the impact of mismatches and variations and leads to an almost simultaneous noise and power match. This process, called desensitization, makes the design largely immune to measurement and modeling errors and manufacturing variations, and significantly reduces frequency-dependent noise mismatches in wide-band LNAs. Measured data from devices and desensitized LNAs designed on 180-nm and 90-nm CMOS processes shows that: (1) a device size selected for optimum R <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</sub> middot is less sensitive to source impedance mismatches and provides a wide-band noise match; and (2) LNAs approach a simultaneous input and noise match, and exhibit significant improvements (ges 2x) in their wide-band noise performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Circuits and Systems I: Regular Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.