Abstract
The complexity and heterogeneity of pore structures in carbonate reservoirs pose significant challenges for accurately characterizing the influence of different pore micro-parameters on reservoir physical properties. Drawing upon the principles of fractal geometry theory applied to reservoir rocks, this study combines mercury intrusion porosimetry (MIP) and nuclear magnetic resonance (NMR) T2 spectrum methods to explore the relationship between the fractal dimension and micro-parameters of pore throats at various scales. Additionally, it clarifies how the fractal dimension of pores at different scales impacts reservoir physical properties. Moreover, a permeability prediction model that incorporates fractal dimensions is developed. The findings demonstrate that the fractal dimension effectively captures the complexity and multi-scale nature of reservoir microstructures, leading to higher reliability in predicting permeability when using the model incorporating the fractal dimension. It provides a theoretical basis for predicting the absolute permeability of fractured carbonate rocks in dual media.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have