Abstract

In this paper, we discuss the problem of describing the collective states with negative parity in even-even nuclei by adding f boson to the usual sd-interacting boson model. The sdf -interacting boson model, which includes monopole ( $s, L=0$ ), quadrupole ( $d, L=2$ ) and octupole ( $f, L=3$ ) degrees of freedom, enables analyzing the electric transitions of atomic nuclei. We proposed a solvable extended transitional Hamiltonian based on affine SU(1,1) Lie algebra within the framework of the sdf -interacting boson model to describe the low-lying octupole states between the spherical and deformed gamma-unstable shapes. Numerical extraction to low-lying energy levels and transition probabilities within the control parameters of this evaluated Hamiltonian are presented for various N values. By reproducing the experimental results, the extended interacting boson model calculations provide a better description of Pd isotopes in this transitional region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call