Abstract
Differential ion mobility spectrometry (DMS) coupled to mass spectrometry is increasingly used in both quantitative analyses of biological samples and as a means of removing background interferences for enhanced selectivity and improved quality of mass spectra. However, DMS separation efficiency using dry inert gases often lacks the required selectivity to achieve baseline separation. Polar gas-phase modifiers such as alcohols are therefore frequently employed to improve selectivity via clustering/declustering processes. The choice of an optimal modifier currently relies on trial and error experiments, making method development a tedious activity. It was the goal of this study to establish a means of CV prediction for compounds using a homologous series of alcohols as gas-phase modifiers. This prediction was based on linear regression of compensation voltages of two calibration runs for the alcohols with the lowest and the highest molecular weights and readily available descriptors such as proton affinity and gas phase acidity of the modifier molecules. All experiments were performed on a commercial quadrupole linear ion trap mass spectrometer equipped with a DMS device between electrospray ionization source and entrance quadrupole lens. We evaluated our approach using a homologous series of 4-alkylbenzoic acids and a selection of 23 small molecules of high chemical diversity. Predicted CV values typically deviated from the experimentally determined values by less than 0.5V. Several test compounds changed their ion mobility behavior for the investigated gas phase modifiers (e.g., from type B to type A) and thus could thus not be evaluated.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have