Abstract

Let X be a completely regular Hausdorff space, A be a unital locally convex algebra with jointly continuous multiplication and C(X,A) be the algebra of all continuous A-valued functions on X equipped with the topology of \({\mathcal{K}(X)}\) -convergence. Moreover, let \({\mathfrak{M}_{\ell}(A)}\) and \({\mathfrak{M}(A)}\) denote the set of all closed maximal left and two-sided ideals in A, respectively. In this note, we describe all closed maximal left and two-sided ideals in C(X,A) and show that there exist bijections from \({\mathfrak{M}_{\ell}(C(X, A))}\) onto \({X \times \mathfrak{M}_{\ell}(A)}\) and \({\mathfrak{M}(C(X, A))}\) onto \({X \times \mathfrak{M}(A)}\). We also present new characterizations of closed maximal ideals in C(X, A) when A is a unital commutative locally convex Gelfand–Mazur algebra with jointly continuous multiplication.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.