Abstract

We have extended the effective-bond-orbital model (EBOM) method [Y. C. Chang, Phys. Rev. B 37, 8215 (1988)] to include the effects of the bulk inversion asymmetry (BIA) present in zinc blendes. This is accomplished without adding to the number of basis states or extending the range of interaction. We have also investigated a variant form of the EBOM proposed in the original formulation that offers improved zone-center behavior, but may also generate spurious solutions in heterostructure calculations due to poor description of bulk zone-boundary band structure. We offer suggestions for avoiding this problem so that this variant form of EBOM may be used safely. In general, we find that the addition of BIA effects in EBOM results in improved descriptions of zone-center band structure, but also in a loss of accuracy far from the Brillouin-zone center. We illustrate the use of the BIA extension with band-structure calculations for bulk GaSb. We show that the spin splitting predicted by the extended EBOM method for an AlSb/GaSb superlattice is in good agreement with $\mathbf{k}\ensuremath{\cdot}\mathbf{p}$ calculations that include BIA effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call