Abstract

Pneumocystis pneumonia is a serious lung infection caused by an original ubiquitous fungus with opportunistic behavior, referred to as Pneumocystis jirovecii. P. jirovecii is the second most common fungal agent among invasive fungal infections after Candida spp. Unfortunately, there is still an inability to culture P. jirovecii in vitro, and so a great impairment to improve knowledge on the pathogenesis of Pneumocystis pneumonia. In this context, animal models have a high value to address complex interplay between Pneumocystis and the components of the host immune system. Here, we propose a protocol for a murine model of Pneumocystis pneumonia. Animals become susceptible to Pneumocystis by acquiring an immunocompromised status induced by iterative administration of steroids within drinking water. Thereafter, the experimental infection is completed by an intranasal challenge with homogenates of mouse lungs containing Pneumocystis murina. The onset of clinical signs occurs within 5weeks following the infectious challenge and immunosuppression can then be withdrawn. At termination, lungs and bronchoalveolar lavage (BAL) fluids from infected mice are analyzed for fungal load (qPCR) and immune response (flow cytometry and biochemical assays). The model is a useful tool in studies focusing on immune responses initiated after the establishment of Pneumocystis pneumonia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call