Abstract
In a recent work (Calixto and Saldanha, 2020) we have shown that experiments that produce and characterize single-mode light squeezing can be explained in a way where no single-mode squeezed light state is produced in the setup. Here we apply the same ideas to demonstrate that experiments that produce and characterize two-mode light squeezing can also be explained without the production of two-mode squeezed light states. In particular, we show that there is no entanglement between the signal and idler “twin beam” modes. This fact may be surprising, since this setup is frequently used to implement entangled-based quantum information protocols such as quantum teleportation. Our work brings an alternative view of the phenomenon. We generalize the Luis and Sánchez-Soto’s two-mode relative phase distribution (Luis and Sánchez-Soto, 1996) to treat four modes, showing that a general physical explanation for the noise reduction in the experiments is a better definition of a phase relation among the four involved optical modes: Signal, idler, and two local oscillators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.