Abstract
In this two-part paper we prove an existence result for affine buildings arising from exceptional algebraic reductive groups. Combined with earlier results on classical groups, this gives a complete and positive answer to the conjecture concerning the existence of affine buildings arising from such groups defined over a (skew) field with a complete valuation, as proposed by Jacques Tits. This first part lays the foundations for our approach and deals with the 'large minimal angle' case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.