Abstract

We have previously demonstrated that the release of some of the 14-3-3 isoforms from keratinocytes is able to influence the expression of key matrix metalloproteinases (MMPs) in dermal fibroblasts. Conversely, in this study we aimed to investigate whether dermal fibroblasts possess the ability to modulate the expression of 14-3-3 proteins in keratinocytes. In order to address this question, human keratinocytes and dermal fibroblasts were harvested and co-cultured. Intra- and extracellular levels of 14-3-3 proteins (β, η, γ, and σ) were analyzed using western blot analysis, and the gene expression was further assessed by quantitative real-time polymerase chain reaction. Gene analysis revealed an up-regulation of all four 14-3-3 isoforms of interest. In addition, the findings of this study reveal a significant increase in the intracellular levels of 14-3-3 γ and σ in keratinocytes co-cultured with fibroblasts compared to those of the mono-cultured control keratinocytes. Mechanistic investigations also demonstrated the capacity of several mitogen-activated protein kinase-specific inhibitors to markedly reduce induction of 14-3-3 σ in keratinocytes stimulated with fibroblast-conditioned medium. The study concluded that dermal fibroblasts possess the ability to influence the expression of several 14-3-3 isoforms (notably γ and σ) in keratinocytes, suggesting that the two cell types might be capable of bi-directionally influencing the protein expression of one another in vivo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.