Abstract

Studies with cultured human epidermal keratinocytes have shown that stratification, the movement of differentiating cells out of the basal layer, involves changes in cell-extracellular matrix and cell-cell adhesiveness mediated by receptors of the integrin and cadherin families, respectively. Keratinocytes normally lose their integrins when they initiate terminal differentiation. However, when stratification is inhibited by a low concentration of calcium ions in the medium (0.1 mM) or by addition of antibodies to P- and E-cadherin in standard medium (1.8 mM calcium ions), differentiating, involucrin-positive, cells continue to express functional integrins. In order to investigate the mechanism by which cadherins may regulate integrin expression, we have examined the distribution and detergent solubility of the receptors and associated cytoplasmic proteins in keratinocytes grown as a monolayer in low calcium medium or transferred to standard medium to induce stratification. Within 1 hour of raising the concentration of calcium ions, integrins, cadherins, alpha-catenin, beta-catenin, plakoglobin, vinculin and alpha-actinin appeared to accumulate at cell-cell borders, whereas the focal contact proteins, paxillin and talin, did not. The change in distribution was correlated with decreased solubility in 0.5% Triton X-100 of some of the proteins examined, but the integrins, alpha-actinin, paxillin and talin remained completely soluble. Addition of cytochalasin D inhibited both the redistribution of proteins and subsequent stratification of involucrin-positive cells. Cycloheximide treatment allowed protein redistribution and stratification, but involucrin-positive cells continued to express integrins. These results suggest that stratification requires the interactions of cadherins and integrins with the actin cytoskeleton and that the selective loss of integrins from differentiating cells requires de novo protein synthesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.