Abstract

Exposure of the skin to chemical substances can contribute significantly to total dose in many workplace situations, and its relative importance will increase when airborne occupational exposure limits are reduced, unless steps to reduce skin exposure are undertaken simultaneously. Its assessment employs personal sampling techniques to measure skin loading rates, and combines these measurements with models of percutaneous absorption to estimate absorbed dose. Knowledge of dermal exposure pathways is in many cases fundamental to hazard evaluation and control. When the skin is the primary contributor to absorbed dose, dermal exposure measurements and biological monitoring play complementary roles in defining occupational exposures. Exposure normally occurs by one of three pathways: (i) immersion (direct contact with a liquid or solid chemical substance); (ii) deposition of aerosol or uptake of vapour through the skin; or (iii) surface contact (residue transfer from contaminated surfaces). Sampling methods fall into three categories: surrogate skin; chemical removal; and fluorescent tracers. Surface sampling represents a supplementary approach, providing an estimate of dermal exposure potential. Surrogate skin techniques involve placing a chemical collection medium on the skin. Whole-body garment samplers do not require assumptions relating to distribution, an inherent limitation of patch sampling. The validity of these techniques rests on the ability of the sampling medium to capture and retain chemicals in a manner similar to skin. Removal techniques include skin washing and wiping, but these measure only what can be removed from the skin, not exposure: laboratory removal efficiency studies are required for proper interpretation of data. Fluorescent tracer techniques exploit the visual properties of fluorescent compounds, and combined with video imaging make quantification of dermal exposure patterns possible, but the need to introduce a chemical substance (tracer) into production processes represents an important limitation of this approach. Surface sampling techniques provide a measure of workplace chemical contamination. Wipe sampling has been used extensively, but is susceptible to high variability. Surface sampling requires definition of dermal transfer coefficients for specific work activities. A preliminary dermal exposure sampling strategy which addresses such issues as sampling method, representativeness and sample duration is proposed. Despite the limitations of current assessment techniques, it appears feasible to consider developing dermal occupational exposure limits (DOELs) for selected workplaces and chemical agents. Initial development of DOELs would be most practical where dermal exposure is from surface contact primarily, and where the work closely follows a routine. Improvement in the techniques of dermal exposure assessment is an important goal for occupational hygiene research, and is likely to lead to better health for worker populations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call