Abstract

The influence function in peridynamic material models has a large effect on the dynamic behavior of elastic waves and in turn can greatly effect dynamic simulations of fracture propagation and material failure. Typically, the influence functions that are used in peridynamic models are selected for their numerical properties without regard to physical considerations. In this work, we present a method of deriving the peridynamic influence function for a one-dimensional initial/boundary-value problem in a material with periodic microstructure. Starting with the linear local elastodynamic equation of motion in the microscale, we first use polynomial anzatzes to approximate microstructural displacements and then derive the homogenized nonlocal dynamic equation of motion for the macroscopic displacements, which is easily reformulated as linear peridyamic equation with a discrete influence function. The shape and localization of the discrete influence function are completely determined by microstructural mechanical properties and length scales. By comparison with a highly resolved microstructural finite element model and the standard linear peridynamic model with a linearly decaying influence function, we demonstrate that the influence function derived from microstructural considerations is more accurate in predicting time-dependent displacements and wave dynamics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call